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Abstract—Foundry is an important industry that supplies
key castings to other industries where they are critical. Hence,
foundry castings are subject to very strict safety controls to assure
the quality of the manufactured castings. One of the type of flaws
that may appear in the castings are defects on the surface; in
particular, our work focuses in inclusions, cold laps and misruns.
We propose a new approach that detects imperfections on the
surface using a segmentation method that marks the regions of
the casting that may be affected by some of these defects and,
then, applies machine-learning techniques to classify the regions
in correct or in the different types of faults. We show that this
method obtains high precision rates.

I. INTRODUCTION

Foundry is one of most ancient processes of the human
history and it has been used as a indicative of the progress
of a society. Basically, it consists in melting a material and
pouring it into a mould where it solidifies into the desired
shape. The resulting castings are supplied to key sectors such
as aeronautic, automotive, weaponry or naval industries. As
one may think, when it comes to these industries the tiniest
defect may become fatal. Therefore, foundry is subject to
very strict safety controls to ensure the final quality of the
manufactured castings.

There are several defects that may appear in the manufac-
tured castings. In this work, we focus on the so-called surface
defects. In particular, we focus on inclusions, which are little
perforations caused by an excess of sand in the mould; cold
laps, which are produced when part of the melted material is
cooled down before the melting is completed; and misruns that
appear when not enough material is poured into the mould.

Currently, the visual inspection and quality assessment is
performed by human operators [1]. Albeit people can perform
some tasks better than machines, they are slower and get
easily exhausted. Besides, operators are hard to find and to
maintain in the industry since they require capabilities and
learning skills that usually take them long to acquire. There
are also cases of boredom that may affect the process. In
some applications, the inspection is critical and dangerous
and computer vision can replace more efficiently and without
danger [2].

Computer vision has become an important field that can
aid to the visual inspection in quality control processes. Com-
puter vision systems are replacing manual inspection in many
industries such as timber [3], textile [4] or metallurgical [5],
[6] businesses. Whereas manual inspection strongly depends

on human factor, computer vision is independent, with the
subsequent avoidance of errors.

Against this background, we propose a new approach
capable of detecting and categorising inclusions, cold laps
and misruns. First, we deploy a machine vision system that
retrieves the information about the surface of the tested cast-
ings. Second, a segmentation method, based on modelling
the correct castings, is used in order to detect the possible
defects. Finally, we employ several features extracted from the
machine-vision and segmentation systems to train machine-
learning algorithms to categorise the possible defects.

Summarising, our main contributions are: (i)an adaptation
of a machine vision system to the segmentation of foundry
casting regions, (ii) a machine-learning approach to categorise
faulty regions on the foundry castings and (iii)an empirical
validation using actual foundry castings of our proposed ap-
proach.

II. FOUNDRY PROCESSES AND SURFACE DEFECTS

Although all of the foundry processes are not the same,
the work-flow performed in foundries is very similar to the
work-flow shown in Fig. 1. The most important stages are the
following [7]:

« Pattern making: In this step, moulds (exteriors) or cores
(interiors) are produced in wood, metal or resin and are
used to create the sand moulds in which the castings will
be made.

o Sand mould and core making: The sand mould is the
most widely extended method for ferrous castings. Sand
is mixed with clay and water or other chemical binders.
Next, the specialised devices create the two halves of the
mould and join them together to provide a container in
which the metals will be poured into.

o Metal melting: In this stage (see 1 in Fig. 1), raw
materials are melt and mixed. Molten metal is prepared
in a furnace and depending on the choice of the furnace,
the quality, the quantity and the throughput of the melt
change.

o Casting and separation: Once the mixture is made,
the molten material is poured into the sand mould. It
can be done using various types of ladles or, in high
volume foundries, automated pouring furnaces. Then, the
metal begins to cool down. This step (see 2 in Fig. 1) is
really important because the majority of the defects can



appear during this phase. Finally, when the casting has
been cooled enough to maintain the shape, the casting is
separated from the sand. The removed sand is recovered
for further processing.

« Removal of runners and risers: Some parts of the cast-
ing that had been used to help in the previous processes
are then removed. They can be detached through knocking
off, sawing or cutting.

o Finishing: To obtain a valid result additional actions are
usually required, e.g., cleaning the residual sand, heat
treatment and rectification of defects by welding.

Fig. 1. Foundry process work-flow showing the different stages castings have
to pass through. More accurately, in 1 it is performed the metal melting step,
and in 2 it is performed the casting preparation and separation step.

In these phases several defects may appear on the surface of
the castings. In this work we focus on cold laps, inclusions, and
misruns. Cold laps may arise when the pouring phase of the
process is performed in more than one step. This implies that
regions of the casting begin to cool down whilst material is still
being poured into the mould. Inclusions are defects produced
by an excess of sand in a region of the casting. Misruns emerge
by a lack of material in the casting, generally as a result of
not enough material enters into the mould, resulting in a poor
filling of the mould.

III. DATA ACQUISITION AND SEGMENTATION THROUGH
MACHINE VISION

In order to retrieve the data and to process the information,
we develop a simple computer-vision system that is composed
of a laser camera with 3D technology, a computer with high
data processing capabilities and a robotic arm, similar to the
one proposed in [8]:

In our case, we can divide this system in the following
components:

1) Image device: We obtain the three-dimensional data

through a laser-based triangulation camera. By taking
advantage of the high-power (3-B class) laser, we are

able to scan the casting even though their surface tends
to be dark.

2) Processing device: We utilise a high-speed workstation.
In particular, we have used a workstation with a XENON
E5506 processor working with 6GB of RAM memory
and a QUADRO FX1800 graphic processing unit. This
component controls the camera and the robotic arm.
Besides, it processes the information retrieved by the
image capturing device and transforms it to segments.

3) Robotic arm: The function of the robot is to automate
the gathering phase of the system, making every nec-
essary move to successfully acquire the data. There are
two working options [9]: (i) to employ the arm in order
to handle the tested castings, leaving the image device in
a fixed position or (ii) to attach the camera to the robotic
arm. We selected the second one due to the diversity of
the castings.

e —

i (2) Image device

Fig. 2. The architecture of the machine vision system. (1) is the robotic arm
of the system, (2) is the image device of the system and (3) is the working
table where the castings are put for analysis.

The casting is put on a working table using a manually
adjusted foundry mould. The mould is built with a material
similar to common silicone, which is easily malleable. In the
case we decide to change the casting type, we would only have
to change the mould. In this way, we ensure that the vision
system allows us to analyse every type of casting in the same
position.

Using this architecture, we gather the information of the
castings. To this end, we put the casting on the mould and
we start the surface scan. The robotic arm makes a lineal
movement, retrieving a set of profiles based on the generated
triangulation of the laser and the optical sensor. In other
words, a foundry casting C is composed of profiles P such
as C = {P1,Pa, ..., Pn_1,Pn}. Each profile is retrieved with
a thickness of 0.2mm. These profiles are vectors p composed
of the heights of each point p, ,. Joining these profiles, we
represent the casting C as a height matrix H

hi1 hi2 him—1 him
ha1 ha.2 ham-1 ha.m
H= (D)
he—11 he—12 he—1m-1 he—1m
hea he2 hem—1 hem



where each h;, represent the height of the point in the
space (z,y). Therefore, the number of profiles of each casting
depends on its size.

Once the system has computed the matrix 4, we have to
remove the possible existing noise, as well as the data unrelated
to the casting surface, like the working table. To this end, we
establish a height threshold.

We have also taken into consideration other representations
of the data using the height matrix:

o Grey-scale Height Map [9]: This well-known represen-
tation converts each height value to a range between 0
and 255, showing the different scales of grey.

o Colour Height Map: This representation is similar to
the Grey-scale Height Map but with higher detail, since
full colour information is used; specifically, the RGB (i.e.,
Red, Green and Blue) components. The colour scale we
used is Jet Colour Map as defined in Matlab [10].

o Normal map: As the former ones, this representation
has been generated by means of the height matrix, but
shows the direction of the normal vector of the surface
for each point in the matrix. Each vector for each point
have three components (x, y, z) and we represent them as
an image — even it is not a true image — corresponding
red component to the = value, green component to the y
value and blue component to the z value.

Thenceforth, the system starts with the segmentation pro-
cess. We define segmentation as the process to select the
regions of the surface of the casting that may have defects. To
this end, we made two different labelling tasks. The first one
classifies each casting as good or defective. This classification
is necessary for the construction of the models that are going
to be used in the segmentation process. The second one is
for evaluating the accuracy of the segmentation and the defect
categorisation methods and labels each segment in ‘correct’,
‘inclusion’, ‘cold lap’ and ‘misrun’.

The segmentation process is accomplished by the following
steps:

1) The system converts to grey-scale the normal map —
although it is not an image, we represent it as one, as
aforementioned — of the casting and the normal map of
the correct models. This step is performed to remove
noise of the rugosity of the surface.

2) The Gaussian Blur filter [11] is applied.

3) The systems applies a difference filter between the
normal map to examine and each of the correct models.

4) The system applies a intersection filter between the
differences computed in the previous step.

5) The system binarizes the results.

6) We apply a algorithm for extracting the areas or seg-
ments (potentially faulty), removing the ones which are
excessively small.

Once each area is extracted , we computed several features
using the different representations. These features can be
divided into the following categories:

« Features of the segmented image: The segmented image

is the result of the segmentation process applied to the
normal map.

— The width, height and perimeter of the area.

— The euclidean distance of the center of gravity of the
area to origin of coordinate axes.

— The fullness, which is computed as Area/(Width *
Height)

Features of the integral image of segmented binary
image: These features are obtained from the conversion to
the integral image of the segmented version of the image.
An integral image is defined as the image in which the
intensity at a pixel position is equal to the sum of the
intensities of all the pixels above and to the left of that
position in the original image [12].

— Mean value of pixels in the integral image.

— The result of addition of the pixels values in the
integral image.

Features of the grey scale height map: They are
extracted from the computed segments in the original
grey-scale height map.

— Max, min, mean, median, standard deviaton and
entropy of the grey histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the grey histogram values without black
(zero value) pixels.

Features of the colour height map: These features are
extracted from the computed segments in the original
colour height map.

— Max, min, mean, median, standard deviaton and
entropy of the red histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the red histogram values without black
(zero value) pixels.

— Max, min, mean, median, standard deviaton and
entropy of the green histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the green histogram values without black
(zero value) pixels.

— Max, min, mean, median, standard deviaton and
entropy of the blue histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the blue histogram values without black
(zero value) pixels.

o Features of the normal map: These features are ex-

tracted from the computed segments in the original nor-
mal map.

— Max, min, mean, median, standard deviaton and
entropy of the x component histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the  component histogram values without
black (zero value) pixels.

— Max, min, mean, median, standard deviaton and
entropy of the y component histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the y component histogram values without



black (zero value) pixels.

— Max, min, mean, median, standard deviaton and
entropy of the z component histogram values.

— Max, min, mean, median, standard deviaton and
entropy of the z component histogram values without
black (zero value) pixels.

Using these features for each segment, we can train
machine-learning algorithms in order to categorise them into
4 possible categories: cold lap, inclusion, misrun and correct.

IV. MACHINE LEARNING CLASSIFIERS

Machine-learning is an active research area within Artificial
Intelligence (Al) that focuses on the design and development
of new algorithms that allow computers to reason and decide
based on data [13].

Machine-learning algorithms can commonly be divided into
three different types depending on the training data: supervised
learning, unsupervised learning and semi-supervised learning.
For supervised algorithms, the training dataset must be labelled
(e.g., the defect in the casting) [14]. Unsupervised learning
algorithms try to determine how data are organised into
different groups named clusters. Therefore, data do not need
to be labelled [15]. Finally, semi-supervised machine-learning
algorithms use a mixture of both labelled and unlabelled data
in order to build models, improving the accuracy of solely
unsupervised methods [16].

Because castings can be properly labelled, we use super-
vised machine-learning; however, in the future, we would also
like to test unsupervised methods for automatic categorisation
of foundry defects.

A. Bayesian Networks

Bayesian Networks [17], which are based on the Bayes
Theorem, are defined as graphical probabilistic models for mul-
tivariate analysis. Specifically, they are directed acyclic graphs
that have an associated probability distribution function [18].
Nodes within the directed graph represent problem variables
(they can be either a premise or a conclusion) and the edges
represent conditional dependencies between such variables.
Moreover, the probability function illustrates the strength of
these relationships in the graph [18].

The most important capability of Bayesian Networks is their
ability to determine the probability that a certain hypothesis is
true (e.g., the probability of a casting to have certain defect)
given a historical dataset.

B. Decision Trees

Decision Tree classifiers are a type of machine-learning
classifiers that are graphically represented as trees. Internal
nodes represent conditions regarding the variables of a prob-
lem, whereas final nodes or leaves represent the ultimate
decision of the algorithm [19].

Different training methods are typically used for learning
the graph structure of these models from a labelled dataset.
We use Random Forest, an ensemble (i.e., combination of weak
classifiers) of different randomly-built decision trees [20], and

J48, the WEKA [21] implementation of the C4.5 algorithm
[22].

C. K-Nearest Neighbour

The K-Nearest Neighbour (KNN) [23] classifier is one of
the simplest supervised machine learning models. This method
classifies an unknown specimen based on the class of the
instances closest to it in the training space by measuring
the distance between the training instances and the unknown
instance.

Even though several methods to choose the class of the
unknown sample exist, the most common technique is to
simply classify the unknown instance as the most common
class amongst the K-nearest neighbours.

D. Support Vector Machines (SVM)

SVM algorithms divide the n-dimensional space represen-
tation of the data into two regions using a hyperplane. This
hyperplane always maximises the margin between those two
regions or classes. The margin is defined by the farthest dis-
tance between the examples of the two classes and computed
based on the distance between the closest instances of both
classes, which are called supporting vectors [24].

Instead of using linear hyperplanes, it is common to use
the so-called kernel functions. These kernel functions lead to
non-linear classification surfaces, such as polynomial, radial or
sigmoid surfaces [25].

V. EMPIRICAL VALIDATION

In order to evaluate our casting defect detector, we collected
a dataset from a foundry, which is specialised in safety and
precisions components for the automotive industry (principally,
in disk-brake support with a production over 45,000 tons a
year). The experiments were focused in three different surface
defects:

1) Inclusion.
2) Cold Lap.
3) Misrun.

To construct the dataset, we analysed 645 foundry castings
with the segmentation machine-vision system described in
Section III in order to retrieve the different segments and
their features. In particular, we use 176 correct casting to
construct the model and the remainder for testing. By means
of this analysis, we construct an dataset of 5785 segments
to train machine-learning models and categorise the defects.
Besides, we added a fourth category to identify the noise that
our machine vision system retrieves called ‘Correct’, which
represent the segments gathered by the segmentation method
that are correct even though the method has marked them as
potentially faulty. In particular, Table I shows the number of
segments in each category.

As it can be noticed, the dataset was not balanced for the
fourth existing classes due to scarce data. To address both
problems (scarce and unbalanced data) we applied Synthetic
Minority Over-sampling TEchnique (SMOTE) [26], which is
a combination of over-sampling the less populated classes



TABLE I
NUMBER OF SAMPLES FOR EACH CATEGORY.

Category ~ Number of samples

Inclusion 387
Cold Lap 16
Misrun 52
Correct 5030

and under-sampling the more populated ones. Nevertheless,
the over-sampling is performed by creating synthetic minority
class examples. In this way, instances were still unique and
classes became more balanced.

The acceptance/rejection criterion of the studied models
resembles the one applied by the final requirements of the
customer. Pieces flawed with defects must be rejected due
to the very restrictive quality standards (which is an imposed
practice by the automotive industry). To this end, we labelled
each possible segment within the castings with its defects.

First of all, we evaluate the coverage of our segmentation
method. To this end, we define the metric ‘Coverage’:

SS*}S
— . 100 2
S+ 500 @

where Ss_,s is the number of segments retrieved by the
segmentation system which are defects and S._,s are the
number of defects that our segmentation method does not
gather.

Next, we evaluate the precision of the machine-learning
method to categorise the segments. To this extent, by means
of the dataset, we conducted the following methodology to
evaluate the proposed method:

e Cross validation: This method is generally applied in
machine-learning evaluation [27]. In our experiments, we
performed a K-fold cross validation with £ = 10. In this
way, our dataset is 10 times split into 10 different sets of
learning (90 % of the total dataset) and testing (10 % of
the total data).

e SMOTE: For each training dataset in each fold, we built
a dataset that contains the result of applying SMOTE to
the original training dataset in order to balance the not
balanced classes.

« Learning the model: For each fold, we accomplished the
learning step of each algorithm using different parameters
or learning algorithms depending on the specific model.
In particular, we used the following models:

— Bayesian networks (BN): With regards to Bayesian
networks, we utilize different structural learning al-
gorithms: K2 [28] and Tree Augmented Naive (TAN)
[29]. Moreover, we also performed experiments with
a Naive Bayes Classifier [27].

— Support Vector Machines (SVM): We performed ex-
periments with a polynomial kernel [25], a normal-
ized polynomial Kernel [30], a Pearson VII function-
based universal kernel [31] and a radial basis function
(RBF) based kernel [32].

— K-nearest neighbour (KNN): We performed experi-
ments with k=1, k=2, k=3, k=4, and k = 5.

Coverage =

— Decision Trees (DT): We performed experiments
with J48(the Weka [21] implementation of the C4.5
algorithm [22]) and Random Forest [20], an ensemble
of randomly constructed decision trees. In particular,
we tested random forest with a variable number of
random trees N, N = 10, N = 25, N = 50,
N =175, and N = 100.

To test the approach, we evaluated the percent of correctly
classified instances and the area under the ROC curve,
which establishes the relation between false negatives and
false positives [33].

Regarding the coverage results, our segmentation system is
able to detect a 59.22% of the faulty castings. More accurately,
the defects that the system classifies incorrectly are little
inclusions and inclusion in the border of the castings. This
coverage value is rather low and, therefore, the segmentation
method should be improved to make it higher.

TABLE II
RESULTS OF THE CATEGORISATION IN TERMS OF ACCURACY AND AUC.
THE BEST RESULTS WERE OBTAINED BY THE RANDOM FOREST TRAINED
WITH MORE THAN 50 TREES.

Model Accuracy (%) AUC
Bayes K2 93.53 0.82
Bayes TAN 92.47 0.82
Naive Bayes 73.84 0.91
SVM: Polynomial Kernel 89.26 0.92
SVM: Normalised Polynomial Kernel 89.86 0.91
SVM: Pearson VII Kernel 95.95 0.90
SVM: Radial Basis Function Kernel 80.76 0.89
KNNK =1 95.24 0.86
KNN K =2 95.77 0.91
KNN K = 3 95.28 0.93
KNN K =4 95.37 0.93
KNNK =5 94.89 0.94
J48 93.16 0.83
Random Forest N = 10 95.73 0.95
Random Forest N = 25 95.92 0.96
Random Forest N = 50 95.95 0.97
Random Forest N = 75 96.04 0.97
Random Forest N = 100 96.12 0.97

If we focus in the precision of the categorisation of the
segments, Table II shows the results of the categorisation
phase. In particular, the best results were obtained by the
Random Forest trained with more than 50 trees with an
accuracy of more than 95% and an AUC of 0.97. SVM trained
with a Radial Basis Function kernel was not a good classifier,
implying that a radial division of the space is not as feasible as
others, because the rest of the SVMs behaved with accuracies
higher 95% in the case of Pearson VII and near 90% in the
case of the both of the polynomial kernels. Surprisingly, the
lazy classifier KNN achieved very high results, ranging from
95.77% to 94.89% of accuracy and from 0.86 to 0.94 or AUC.
J48 an average classifier that achieved a poor AUC: 0.83.

Although the results of the categorisation of the surface
defect were good enough to implant this system in a real
foundry, the coverage of the segmentation method renders the
whole system incomplete. The coverage should be improved
in order to make this system deployable.



VI. CONCLUSIONS

Foundry is an ancient magic-surrounded activity that has
evolved to become one of the key pieces of the whole society
as we know it. Because foundry supplies key pieces to other
important and critical sectors like aeronautic or automotive
industries where the tiniest defect may become fatal.

In this paper, we proposed a new system based on machine
vision and machine learning in order to detect and categorise
defects in the surface of iron castings. This approach starts
by retrieving images from the tested castings. Then, the
segmentation method identifies all the possible defects within
the castings. Finally, machine-learning models are used to
classify the possible defect into inclusion, cold lap, misrun
or correct. We evaluated our approach in terms of coverage
of the proposed segmentation method and precision of the
categorisation of the regions. The experimental results showed
that, albeit our precision in categorisation is very high, the
coverage of the system should be improved.

Future work is oriented in 2 main ways. First, we are going
to develop new segmentation methods in order to enhance
our coverage results. Second, we will use different features
to improve the categorisation process.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the Ministry of
Science and Innovation of Spain under the program ‘Proyec-
tos Singulares y Estratégicos del Programa Nacional de Co-
operacién Publico-Privada 2009°, project ‘POLIFEMO: PO-
lifemo, Lowering Imperfections in Foundry Enterprise via a
Machine-vision Oriented model’ and by the Diputacién Foral
de Bizkaia under the program ‘Plan integral de innovacién
empresarial. Area 5. Tecnologia’, project “7/12/TK/2009/0005’
named ‘Desarrollo de la visién artificial orientada a las vari-
ables del sistema de gestion integral del proceso de transfor-
macién metalica’ .

REFERENCES

[1] A. Mital, M. Govindaraju, and B. Subramani, “A comparison between
manual and hybrid methods in parts inspection,” Integrated Manufactur-
ing Systems, vol. 9, no. 6, pp. 344-349, 1998.

[2] P. Kopardekar, A. Mital, and S. Anand, “Manual, hybrid and automated
inspection literature and current research,” Integrated Manufacturing
Systems, vol. 4, no. 1, pp. 18-29, 1993.

[3] O. Silvén, M. Niskanen, and H. Kauppinen, “Wood inspectionwith non-
supervisedclustering,” Machine Vision and Applications, vol. 13, no. 5,
pp. 275-285, 2003.

[4] V. Murino, M. Bicego, and I. Rossi, “Statistical classification of raw
textile defects,” in Pattern Recognition, 2004. ICPR 2004. Proceedings
of the 17th International Conference on, vol. 4. 1EEE, 2004, pp. 311-
314.

[5] FE. Pernkopf, “Detection of surface defects on raw steel blocks using
bayesian network classifiers,” Pattern Analysis & Applications, vol. 7,
no. 3, pp. 333-342, 2004.

[6] Y. Frayman, H. Zheng, and S. Nahavandi, “Machine vision system for
automatic inspection of surface defects in aluminum die casting,” Journal
of advanced computational intelligence, vol. 10, no. 3, pp. 281-286,
2011.

[7] S. Kalpakjian and S. Schmid, Manufacturing engineering and technol-
ogy, 2005.

[8]

[9]
[10]
[11]

[12

[13]

[14

[15]

[16

[17

[18

[19]
[20]

[21]

[22]

(23]

[24
[25]

[26

[27]

[28]

[29]

[30

[31]

[32]

[33

F. Pernkopf and P. O’Leary, “Image acquisition techniques for automatic
visual inspection of metallic surfaces,” NDT & E International, vol. 36,

no. 8, pp. 609-617, 2003.
D. vom Stein, “Automatic visual 3-d inspection of castings,” Foundry

Trade Journal, vol. 180, no. 3641, pp. 24-27, 2007.

R. Gonzalez, R. Woods, and S. Eddins, Digital image processing using
MATLAB. Pearson Education India, 2004.

R. Gonzalez and R. Woods, “Digital image processing. 1992, Reading,
Mass.: Addison-Wesley, vol. 16, no. 716, p. 8.

P. Viola and M. Jones, “Robust real-time face detection,” International
Jjournal of computer vision, vol. 57, no. 2, pp. 137-154, 2004.

C. Bishop, Pattern recognition and machine learning.  Springer New
York., 2006.

S. Kotsiantis, “Supervised Machine Learning: A Review of Classifica-
tion Techniques,” in Proceeding of the 2007 conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word
Al Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies, 2007, pp. 3-24.

S. Kotsiantis and P. Pintelas, “Recent advances in clustering: A brief
survey,” WSEAS Transactions on Information Science and Applications,
vol. 1, no. 1, pp. 73-81, 2004.

O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning. MIT
Press, 2006.

J. Pearl, “Reverend bayes on inference engines: a distributed hierarchical
approach,” in Proceedings of the National Conference on Artificial
Intelligence, 1982, pp. 133-136.

E. Castillo, J. M. Gutiérrez, and A. S. Hadi, Expert Systems and
Probabilistic Network Models, erste ed., New York, NY, USA, 1996.

J. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81-106, 1986.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

S. Garner, “Weka: The Waikato environment for knowledge analysis,”
in Proceedings of the 1995 New Zealand Computer Science Research
Students Conference, 1995, pp. 57-64.

J. Quinlan, C4. 5 programs for machine learning. Morgan Kaufmann
Publishers, 1993.

E. Fix and J. L. Hodges, “Discriminatory analysis: Nonparametric
discrimination: Small sample performance,” Technical Report Project
21-49-004, Report Number 11, 1952.

V. Vapnik, The nature of statistical learning theory. Springer, 2000.
S. Amari and S. Wu, “Improving support vector machine classifiers by
modifying kernel functions,” Neural Networks, vol. 12, no. 6, pp. 783—
789, 1999.

N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: synthetic
minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, no. 3, pp. 321-357, 2002.

C. M. Bishop, Neural Networks for Pattern Recognition.
University Press, 1995.

G. F. Cooper and E. Herskovits, “A bayesian method for constructing
bayesian belief networks from databases,” in Proceedings of the 1991
conference on Uncertainty in artificial intelligence, 1991.

D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth,
“Bayesian network classifiers,” in Machine Learning, 1997, pp. 131-
163.

S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel
support vector machines is efficient,” in Proc. CVPR, vol. 1, no. 2, 2008,
p. 4.

B. Ustiin, W. Melssen, and L. Buydens, “Visualisation and interpretation
of support vector regression models,” Analytica chimica acta, vol. 595,
no. 1-2, pp. 299-309, 2007.

B. Cho, H. Yu, J. Lee, Y. Chee, I. Kim, and S. Kim, “Nonlinear support
vector machine visualization for risk factor analysis using nomograms
and localized radial basis function kernels,” IEEE Transactions on
Information Technology in Biomedicine, vol. 12, no. 2, p. 247, 2008.
Y. Singh, A. Kaur, and R. Malhotra, “Comparative analysis of regression
and machine learning methods for predicting fault proneness models,”
International Journal of Computer Applications in Technology, vol. 35,
no. 2, pp. 183-193, 2009.

Oxford



